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J .  Phys. A: Math. Gen. 19 (1986) 1485-1493. Pnnted in Great Britain 

Half-range solutions of Sturm-Liouville kinetic equations 

P Dit6 
Institute of Physics and Nuclear Engineering, PO Box MG6, Bucharest, Romania 

Received 7 June 1985 

Abstract. A simple method for solving boundary value problems for kinetic equations is 
proposed which by separation of variables leads to indefinite Sturm-Liouville operators. 
It is shown that the boundary conditions allow the same treatment of the problems as that 
for definite operators. 

1. Introduction 

The purpose of this paper is to solve the stationary Sturm-Liouville equation 

subject, alternatively, to the following boundary conditions: 

(a) f ( x ,  0) = cp(x)  if r ( x )  > 0 

f ( x ,  Y )  = O(1) or 41) a s y + a  

or, with a completely absorbing boundary at y = 0 

(b) f ( x ,  0) = 0 if r ( x )  > 0 

f ( x ,  Y )  -+ h ( x ,  Y )  = y g l ( x )  - g 2 ( x )  as Y -+ 03 

(1.2u) 

(1.26) 

where h ( x ,  y )  is a diffusion solution of equation (1.1). 
The salient feature of the problem is that r ( x )  changes sign on I .  In this paper we 

shall suppose that r ( x )  has only one sign change on I ,  an assumption which seems to 
be sufficient for treating concrete physical problems and, without loss of generality, 
we may write r ( x )  = x s ( x ) ,  with s ( x )  a positive function on I.  

Boundary value problems of this type arise as various kinetic equations. The 
Fokker-Planck equation (Wang and Uhlenbeck 1945, Pagani 1970, Beals and 
Protopopescu 1983, Dit6 1985) has the form 

(1.3) 

Here 5 is the friction coefficient and a = k T / m .  If we make the transformation 

f ( x ,  U )  = e x p ( - t 2 / 2 ) g ( x ,  t )  t = ( 2 a ) - ' / ' u  
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1486 P Dijd 

equation (1.3) takes the form 
2t5-’(2a)’12[ag(x, t)]/[ax] = (a2/at2+ 1 - t2)g(x, t ) .  ( 1.4) 

Bothe’s model for electron scattering (Bothe 1929, Beals 1917) leads to the equation 

x E LO, a) p E Z = ( - l , l )  

where f(x, p )  has finite limits as p + *l. 

1980) is described by the equation 
The scattering of plasma waves by random density fluctuations (Fisch and Kruskal 

x E [O, a) 6 E I = ( -T ,  T ) ,  etc. 

Although some of them are quite old, the above problems proved to be difficult to 
solve. 

The Fokker-Planck equation (1.3) with the baundary conditionf(0, U )  = af(0, -U), 
0 s a s 1 at x = 0 and exponential decay as x + CC was solved by Beak and Protopopescu 
(1983). An analytic solution for the same equation but with a completely absorbing 
boundary at x = 0 and asymptotic behaviourf(x, U )  + (x  - u l - ’ )  exp( -u2/2a)  as x + CO 

was given recently by Dit5 (1985). 
In a recent preprint Klaus et a1 (1985) have developed methods of constructing 

explicit representations for the solutions of the general problem (1.1)-( 1 . 2 ~ ) .  Their 
methods allow us to compute, in principle, the so-called albedo operator, in terms of 
which are found the solutions. 

The object of this paper is to present an alternative simpler method for solving the 
problems (1.1)-(1.2), based on an eigenfunction expansion. Our approach to the 
general equation (1.1) is the use of the separation of variables. The main fact is that, 
although formally the resulting eigenvalue equation is not of the usual form, it can be 
treated by the usual methods, since the boundary conditions (1.2u)-(1.26) allow it. 

The paper is organised as follows: in 0 2 we solve the problem (1.1)-(1.2~) by 
finding a complete set of elementary solutions of equation (1.1) on the half-range 
interval where r (x )>  0. In § 3 we treat the same equation but with a completely 
absorbing boundary at y = 0. The next section contains two examples, and the paper 
ends with a conclusion. 

2. A complete set of elementary solutions 

We treat equation (1.1) by separation of variables 

f (x ,  Y )  = exp(-Ay)h(x) 

-(d/dx)( p(x)  dh /dx )+  q(x)h = Ar(x)h 

which leads to the eigenvalue problem 

(2.1) 
X E Z = ( U ,  b) --COS U <O,O< b s CO. 

If we consider the above Sturm-Liouville operator on the interval I, we obtain an 
indefinite problem since r(x)  changes sign there. This is the common method that was 
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used by almost all those who studied equations of this form (Baouendi and Grisvard 
1968, Pagani 1969, Beals 1977, Beals and Protopopescu 1983). 

Our method consists in looking at the operator (2.1) where the boundary conditions 
are given, i.e. where r(x)  > 0. In the following we show that this is possible since the 
boundary conditions (1.2a) and (1.26) do not impose any boundary condition upon 
the operator (2.1). In other words, we are free to choose at will the boundary conditions 
which make the differential expression (2.1) a self-adjoint operator. 

For simplicity, we shall suppose that p(x) ,  q(x)  and r(x) are continuous functions 
over any finite interval contained in I .  The singularities of the operator (2.1) arise 
from the singularities of p(x) ,  q(x)  and r(x)  at one end or both ends of the interval, 
or from the extension of I to infinity in one direction or both. 

If we want a functional calculus, i.e. spectral decompositions, expansion theorems, 
etc, we have to give a sense to the differential expression (2.1). We can do that by 
providing equation (2.1) with appropriate boundary conditions. In general, these 
conditions are provided by the boundary conditions to which the solution f(x, y )  is 
subject. But it is easily seen that the relations ( 1 . 2 ~ )  and (1.26) do not impose any 
definite boundary condition upon h ( x ) .  However, they suggest we look at the differen- 
tial operator (2.1) on the half-range interval J = [O, b ) .  On this interval r(x) > 0, the 
Sturm-Liouville problem is definite and the spectral theory is done in the Hilbert space 
L2(J, 4 ~ )  dx). 

The differential operator (2.1) has x = 0 as a regular point, i.e. both the independent 
solutions of (2.1) are local L2(J, r (x)  dx),  from which we conclude that its deficiency 
indices are either ( 1 , l )  or (2,2). For terminology see Reed and Simon (1975). 

In the first case the operator (2.1) becomes self-adjoint by imposing one boundary 
condition at the non-singular end x = 0, whose general form is 

a E [O, 2rr). (2.2) h(O) COS a -P(x)  

In the second case, we have to supplement (2.2) by a boundary condition at the 
other end x = b 

(2.3) 

By imposing the boundary condition (2.2) (or (2.2) and (2.3), respectively) we get 
for each (Y (a and P )  a self-adjoint extension, each extension providing us with a 
complete set of eigenfunctions. 

The problems (1.1)-(1.2) can be solved in full generality only when there are 
self-adjoint extensions of the operator (2.1) which have a non-negative spectrum. 

This condition is equivalent to the positivity of Friedrich’s extension. The restriction 
arises from the ‘physical’ condition that the solution f(x, y )  should not grow exponen- 
tially as y + 00. 

The problem (2.1)-(2.3) being well defined, we get by standard methods (Titchmarsh 
1962) complete orthonormal systems of eigenfunctions, which we write in the form 
(u,(x)):==,, although the operator may have a continuous spectrum. 

The functions (exp( -Any)un(x ) ) :=o  are elementary solutions of equation (1.1) and, 
consequently, a general solution has the form 

(2.4) 
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where c, are arbitrary constants. These coefficients are found from the boundary 
condition at y = 0 

m 

f(x, 0) = ~ ( x )  = C cnun(x) 
n =o 

from which we get 

c n  = lob q(x)un(x)r(x) dx n = 0,1, . . . . 

Thus the unique solution of the problem (1.1) and ( 1 . 2 ~ )  can be written as 

It is easily seen from (2.5) that if A = O  is in the spectrum of the self-adjoint 
extension, f(x, y) = O( 1) as y + 00, while in other cases the solution is o( 1) as y + W. 

3. Completely absorbing boundary 

The boundary value problem (1.1)-(1.2b) is a little more difficult, and in the case 
where the deficiency indices are (2,2) the boundary conditions (1.2b) are not sufficient 
to determine a unique solution. By adding supplementary information, such as the 
asymptotic behaviour of the particle density and/or the particle flux, we can again 
obtain a unique solution. 

If we try to use the same procedure as in the preceding section, since now q ( x )  = 0, 
we arrive at c, = 0, i.e. to the null solution. Of course the null solution satisfies the 
boundary condition at y = 0, but does not verify the boundary condition at y = W. 

We can bypass this difficulty by adding to the linear independent set of functions 
(exp(-Any)u,(x)):=o one or more functions which are solutions of equation (1.1). In 
this way we obtain a linear dependent set of vectors and now we can write an expansion 
like (2.4), where not all the coefficients are identically zero. As a general rule we shall 
add only one such function, obtaining in a certain sense a minimal solution. If we 
add more functions we have to provide supplementary boundary conditions in order 
to find unique solutions. Thus we have to find new solutions of equation (1.1) which 
are not of the separated variables form. 

The practitioners in the kinetic equations field know that these equations have 
another type of solution, the so-called diffusion solution, whose general form was 
conjectured by Fisch and Kruskal (1980) to be h (x ,y )=y-g (x ) .  In fact equation 
(1.1) has a solution of the form 

h ( X , Y )  =Ygl(x)-g2(x) (3.1) 

where g, and g2 satisfy the following coupled equations 

Lxg,(x) = 0 ( 3 . 2 ~ )  

Lxg*(x) = r (x)g,(x)  (3.2b) 

where Lx denotes the operator 

Lx = -(d/d x)p(x)(d/dx)  + q(x) .  
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L, is a second order differential operator and the most general solution h(x,y) 
depends on four arbitrary constants. Thus the minimal extension of the set 
(exp( -A,,y)u,(x)):==,, obtained by adding only one such solution, requires four new 
constraints in order to find a unique solution. 

However one parameter is redundant and can be taken as zero. An argument 
proving this is as follows. 

In the preceding section we found that the asymptotic behaviour of the solution 
requires the non-negativity of the spectrum of the corresponding self-adjoint extension. 
If such an extension exists, then, in general, there exists another extension, which may 
coincide with the previous one, which has A = 0 in its spectrum. (If the so-called soft 
extension is strictly positive, A = 0 is not in the spectrum of any extension.) 

We consider that extension which has A = 0 in its spectrum and let ( U , ( X ) ) ~ = ~  be 
its eigenfunctions. 

The solution of equation (3.26) is determined up to the general solution of the 
homogeneous equation L,g = 0, which is the eigenvalue equation for A = 0. Thus one 
of the two independent solutions of L,g = 0 satisfies the boundary conditions of the 
corresponding extension, and coincides with uo(x). Hence we can set to zero the 
coefficient of this solution appearing in h(x, y ) ,  since the solution of equation (1.1) 
has the form 

(3.3) ) 
Lc 

f(x, y )  = c (yg,(x) -g2(x) + c c n  exp(-Any)un(x) . 
n=O 

Here we have chosen one of the remaining parameters as a multiplicative constant. 
In equation (3.3), g2(x) consists of a particular solution of the inhomogeneous 

equation (3.2b), plus the solution, multiplied by an arbitrary constant, of L,g = 0 that 
does not satisfy the boundary condition of the self-adjoint extension. Thus g2(x) 
depends only upon three parameters, two of them being introduced by the general 
solution gl(x)  of equation ( 3 . 2 ~ ) .  

If the deficiency indices are (1 , l )  and the spectrum is discrete, one of the solutions 
of the homogeneous equations (3.2a, b) is not in the Hilbert space L,(J, r(x) dx)  and 
we have to reject it. In this case g,(x) and g,(x) depend upon one parameter which 
we have chosen in (3.3) as a multiplicative constant. It can be found from the asymptotic 
behaviour of f(x, y ) .  Indeed the second boundary condition (1.2b) requires 

f (x ,  Y )  + yg,(x) - g2(x) asy+co 

and we obtain C = 1. 
The coefficients c, are determined by the boundary condition at y = 0: 

a3 

0 = -g2(x)+ c C,U"(X) 
n = O  

from which we obtain 

Cn = job g>(x)un(x)r(x) dx n = 0, 1, . . . . 

(3.4) 
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If the spectrum is continuous and coincides with the positive semi-axis [0, CO) the 
above arguments may not be true as the following simple example shows: 

Y E [O, 03) xEI=(--cO,CO). 

This equation has the diffusion solution 

h ( X, y ) = y ( 12ux + 6 b ) + ax4 + bx3 + cx + d 

where U,  b, c, d E C are arbitrary constants. Here both solutions of Lxg = 0 are not in 

If the spectrum is continuous but A = 0 is an isolated eigenvalue, the above 
arguments are again true. 

If the deficiency indices are (2,2), the solution (3.4) still contains two arbitrary 
constants, both in the diffusion solution h(x,y).  Their origin is in the fact that the 
equation L,g = 0 has two independent solutions that are both in L J J ,  r(x) dx).  

These parameters can be fixed, specifying, for example, the asymptotic behaviour 
of the particle density and/or the particle flux. 

L2(R+,  x dx). 

4. Examples 

In this section we treat two examples, the first being the Fokker-Planck equation (1.3). 
We have shown that by the transformation 

f (x ,  U )  =exp(-f2/2)g(x, t )  

Ax, t )  =exp(--A,x)h(t) 

f = ( 2 c Y ) - ’ / 2 u  

the Fokker-Planck equation takes the form (1.4). If we make the ansatz 

where A I  = ( 2 c ~ - ” ~ 5 A  we obtain the equation 

(-d2/dt2+ t 2 -  1)h = 2 f A h .  (4.1) 

Two independent solutions of equation (4.1) are y ,  = D A z I 2 ( d (  t - A ) )  and y ,  = 

In this case I = (-CO, CO) and J = [0, C O ) ,  and we look for a solutionf(x, U )  such that 
D-A2,2-,(ifi( t - A ) ) ,  where D , ( z )  denotes the parabolic cylinder function. 

f ( 0 , U )  = cp(u) for U E J. 

If we make the change of variable t =h on J, equation (4.1) has the form 

- ( d / d ~ ) [ 2 h  ( d y ( s ) / d ~ ) ]  +$(h - l / h ) y (  S )  = Ay( S )  

Y ( S )  = h ( t ( s ) )  S E J  
(4.2) 

which is a standard Sturm-Liouville equation. The deficiency indices of the operator 
(4.2) are (1, 11, since y 2 e  L2(R+, ds). 

We choose a = 0 in equation ( 2 . 2 )  which leads to the simplest form for the eigenvalue 
equation. The eigenvalues are the roots of the equation 

DAz/2 ( -Ad)  = o  
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are positive and satisfy (2n)’/’< A, < (2n + 2)1/2, n = 0,1, . . . . The orthonormal eigen- 
functions are 

u , ( s ) = ~ - ” ~ D A ~ / ~ ( J Z ( ~ -  hn))/D’,;l2(-A,JZ) 

where D’,(z) = (d/dz)D,(z). 
The solution of the boundary value problem (1.2a)-(1.3) is 

(4.3) 

As concerns the second problem, that with a completely absorbing boundary at 
x = 0, we know that equation (1.3) has a diffusion solution (Pagani 1970) of the form 

h(x, U )  = ( x -  v l - ’ )  exp(-u2/2a). 

Hence 

f(x, U ) =  h(x, ~ ) + 2 - ” ~  03 d, exp(----) V’ [A,x DA32( a - ’ j 2 v  -Ana) 
,=O ~ C Z  & Di>2(-Anfi) ‘ 

(4.4) 

The coefficients d,  are given by the relation (3.4), and in this case they have the form 

c, = l - ’ ( 2 ~ ~ ) ’ / ~  loz SI/’ e-”’2u,(s) ds. 

The solution (4.4) can be written 

U 2  

n = O  4a 

X 

f ( x ,  U )  = ( x -  U -’) e x p ( - ~ ~ / 2 a ) + 2 - ” ~  C exp( - - - l ( 2 a ) - ’ ” A n x )  

(4.5) 

The relations (4.3) and (4.5) show that the solutions are well defined functions also 

As a second example we consider the equation 
on the interval U < 0. Further details can be found in Di@ (1985). 

Y E  [O, x € Z = ( - l , l ) .  

By separation of variables we find the equation 

- h” = A sgn xh 

which on the half-range interval J = [0, 1) can be written as 

h”+ Ah = 0 x E J. 

(4.6) 

Two independent solutions are h, = sin x f l  and h2 = cos x f i ,  which are both in 
L2(J,  dx).  The deficiency indices are (2,2) .  
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We choose (Y = 0 in equation (2.2) and p arbitrary in equation (2.3). The eigenvalues 
are given by the equation 

The orthonormal eigenfunctions are 
[(sin &)/(A)] cos p -cos sin p = 0. 

2( 1 +A,, tan2 p )  ( 1 + A,, tan2 p +tan p 
"2 ) s i n x a  n = 0,1, . . . . u n  (x)  = 

The solution of the problem (1.1) and ( 1 . 2 ~ )  is 

exp(-Ad) sin %a I + A ,  t an2p  
Y )  = Zo 1 + A,, tan2 p +tan p 

If p = 0 in equation (2.3), the eigenvalues are A,, = n.rr and the eigenfunctions are 

Equation (4.6) has the diffusion solution 

where a, 6, c, d E C are arbitrary constants. 
We consider that extension for which tan p = 1. Then A = 0 is the eigenvalue and 

its orthonormal eigenfunction is uo = &x. In this case we can set c = 0 and the diffusion 
solution depends only upon three parameters. One of them is determined from the 
condition 

u,,(x) = a s i n  nrx, n = 1, 2 , .  . . . 

h ( x , y ) = a [ y ( x + 6 ) + ( x 3 / 6 + 6 x 2 / 2 )  s g n x + c x + d ]  

f ( 4 Y ) ' Y X  as y+oo 
and we get a = 1. The coefficients 6 and d are still arbitrary and to obtain a unique 
solution we need two new constraints upon the function f(x, y), etc. 

5. Conclusion 

In this paper we have shown that the boundary value problems which by separation 
of variables lead to indefinite Sturm-Liouville operators can be treated by usual 
methods, since the boundary conditions allow this. 

We have shown also that the completely absorbing boundary condition f ( x ,  0) = 0, 
where r(x)>O, is not sufficient in determining a unique solution. Even specifying 
the asymptotic behaviour of the solution does not lead, in all cases, to unique solutions. 
So much care is needed when solving kinetic equations with such a boundary condition, 
especially when the problem is treated by approximate numerical methods. 

Note added in proof: Solutions ( 2 . 5 )  and (3.4) are valid, strictly speaking, only for x>O.  However, the 
Picard-Lindelof theorem allows their continuation into the x <  0 region. If p ( x ) ,  q ( x )  and r ( x )  are analytic 
functions, this continuation is automatic, as the Fokker-Planck equation shows. In the second example 
treated in this paper the use of the Picard-Lindelof theorem shows that, for x CO, u , ( x )  has the form 

( 2 ( 1 + ~ ,  tan'p) 
U"(X)  = sinh x J\, . 

1 + A, tan' p +tan p 
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